12 episodes

Dávid Gyula előadásai a Polaris Csillagvizsgálóban. A Magyar Csillagászati Egyesület felvételei.

Kozmofizika Dávid Gyula

    • Science
    • 4.9 • 57 Ratings

Dávid Gyula előadásai a Polaris Csillagvizsgálóban. A Magyar Csillagászati Egyesület felvételei.

    'Mire való a többi részecske?' és 'Túl a Standard Modelleken'

    'Mire való a többi részecske?' és 'Túl a Standard Modelleken'

    Sorozatunk eddigi előadásaiban számba vettük a legfontosabb, az Univerzumban gyakran előforduló, annak tulajdonságait és fejlődését nagyban megszabó elemi részecskéket, tulajdonságaikat, szerepüket. De ezzel az ismert elemi részecskéknek csak igen kis hányadát említettük. Hol a többi részecske? Milyenek a tulajdonságaik, miben térnek el a megemlített részecskéktől? Miért nem kerültek szóba a korábbi előadásokon, miért nem játszottak szerepet az Univerzum történetében? Egyáltalán: mire valók? E kérdések mellett illik arra is kitérnünk, hogy a részecskefizikai Standard Modellen túl kacsintgató új elméletek további elemi részecskék garmadájának létezését tételezik fel. Hát ezek meg hol bújkáltak eddig? Lehet, hogy az ő létezésüket figyelembe véve előlről kell kezdenünk, újra kell írnunk a Világegyetem már ismertnek vélt történetét? A kozmológia Standard Modelljének alapja az einsteini általános relativitáselmélet, a részecskefizika Standard Modellje pedig a kvantumelméletre, közelebbről a kvantum-mezőelméletre épül. Gyümölcsöző együttműködésük és látványos sikereik nem feledtetik az a szomorú tényt, hogy az alapjukul szolgáló két hatalmas és csodálatosan szép fizikai elmélet sem fizikai, sem matematikai köszönő viszonyban sincs egymással. Pedig fontos lenne: vannak a téridőnek olyan szögletei, zugai (pl a fekete lyukak belseje vagy a Nagy Bumm közvetlen környezete), ahol a kvantumos és gravitációs effektusok egyformán fontos szerepet játszanak. Az elméletek kívánatos egyesítése, a "kvantumgravitáció" nevű új tudományág kifejlesztése a hallgatóságban ülő fiatalok generációjának feladata - borítékolható, hogy a 2052-es fizikai Nobel-díjat a kvantumgravitáció elméletét megalkotó tudósoknak ítélik majd oda. Sorozatunk záró előadásában az eddigi próbálkozásokat és (szerény) eredményeket tekintjük át. Egy ilyen átfogó elmélet természetesen újraírja majd a kozmológiát, és megváltoztatja a Világegyetemről alkotott általános képünket.

    • 2 hrs 5 min
    Az ötödik elem - a kvinteszencia, avagy Einstein legnagyobb tévedése

    Az ötödik elem - a kvinteszencia, avagy Einstein legnagyobb tévedése

    Nagy embereknek a tévedései is tanulságosak - hát még amikor nyolcvan év késéssel kiderül, hogy nem is tévedtek olyan nagyot. Albert Einstein, a mai kozmológiai modellek alapjául szolgáló általános relativitáselmélet megalkotója maga nevezte élete legnagyobb tudományos tévedésének a kozmológiai állandó bevezetését. Az ezredforduló környékén elvégzett preciziós csillagászati mérésekre épülő új kozmológia viszont ismét használja, és világképe fontos elemének tekinti a kozmológiai állandót - így tudja modelljeivel reprodukálni az Univerzum megfigyelt tulajdonságait. Ez az "állandó" a mai felfogás szerint viszont nem egy univerzális természeti konstans, hanem egy új, furcsa tulajdonságokkal (pl antigravitációs hatással) bíró anyagfajta, az ún. "kvinteszencia" vagy "sötét energia" megnyilvánulása. Ez az anyagfajta pedig nem kevesebb, mint 70 százalékát alkotja az Univerzum össztömegének! Hová bújt eddig ez a sok anyag, hogyhogy nem vettük észre? Beleillik-e a részecskefizika modelljeibe, vagy azokból kilógó, azokon túlmutató, új fizikát képvisel? És egy gyakorlati kérdés: mikor és hogyan lehet segítségével antigravitációs autót vagy űrhajót építeni?

    • 1 hr 59 min
    Szép időben a tömeg lemegy a térre - avagy a Higgs-részecske nyomában

    Szép időben a tömeg lemegy a térre - avagy a Higgs-részecske nyomában

    Az idézett mondás az általános relativitáselmélet nagy felfedezését, a tér, az idő és a tömeg közti univerzális összefüggést illusztrálja. De vajon miért van az objektumoknak (így az elemi részecskéknek) tömegük? Egyáltalán, mit jelent a tömeg jól ismert(nek vélt) fizikai fogalma? A részecskefizika Standard Modellje szerint a részecskék tömege a Higgs-mezővel való kölcsönhatásnak köszönhető - ennek kvantumát, a régóta keresett Higgs-részecskét a 2008 nyarán beinduló szuper-nagyenergiájú részecskegyorsító, az LHC fogja felfedezni nem sokkal sorozatunk befejezése után, ezzel a helyére illesztve a Standard Modell utolsó hiányzó puzzle-darabkáját. De a Higgs-mező tartogatott még egy meglepetést a fizikusoknak és a kozmológusoknak: kozmikus méretekben alkalmazva megoldotta a Nagy Bummra épülő csillagászati modell számos nehézségét, és egy új korszakot, az infláció korát iktatta be az Univerzum korai történelmébe.

    • 2 hrs 16 min
    A szilárd anyag szilárdítója

    A szilárd anyag szilárdítója

    Az ''elektronika'' szót nem kell magyarázni: az elektronikus eszközök átszövik mindennapjainkat. Miért pont az elektron az az elemi részecske, amely ilyen engedelmes háziállatnak szegődött az emberhez, parancsunkra és gombnyomásunkra színes ábrákat rajzol a képernyőre, biteket kódolva kanyarog a mikrochipek bonyolult topológiájú áramköreiben? De már az emberi technika előtt is az elektron tette lehetővé a szilárd objektumok (a porszemcséktől a bolygótestekig), sőt az atomokból összetett molekulák képződését, beleértve a szerves vegyületek végtelen sokaságának, így magának az életnek a létrejöttét is. ''Hogyan működik'' ez a páratlanul rugalmas és sokoldalú részecske - és miért pont ő játssza el ezt a szerepet?

    • 1 hr 45 min
    A wimpek pókhálója

    A wimpek pókhálója

    A 20. század végének nagy csillagászati áttörése során feltérképeztük a belátható Világegyetemet, és az eredmények megerősítették a korábbi sejtéseket: a galaxisok kiterjedt, laza pókhálóra emlékeztető, szálas szerkezetű struktúrákba rendeződnek. Vajon mi hozta létre ezt a szerkezetet? - a gravitáció puszta hatásától egészen másféle makrostruktúrák kialakulását várnánk. A tettes a nevezetes ''sötét anyag'', amelynek hatását (pontosabban hiányát) már a harmincas években felismerték a galaxisok dinamikájának vizsgálata során. Ma már közvetlen kísérleti bizonyítékaink is vannak a sötét anyag létezésére. De vajon miből van, milyen makro- vagy mikroobjektumokból, elemi részecskékből áll a sötét anyag? MACHO vagy WIMP? Mik ezek, és hogyan tudjuk kimutatni, leleplezni őket?

    • 1 hr 31 min
    A kvarkok bebörtönzése

    A kvarkok bebörtönzése

    A nukleonok még elemibb alkotórészei, a kvarkok létezését a 20. század hatvanas éveiben tételezték fel, kísérleti kimutatásuk a hetvenes évektől az ezredfordulóig húzódott. Mégsem látott még senki egyetlen magányos, a proton vagy a neutron belsejéből kiszabadított kvarkot sem! Miért viselkednek ezek a részecskék annyira másképp, mint a többi elemi részecske, mi különbözteti meg a kvarkok "börtönszerű" kötött állapotait más részecskestruktúráktól? Miért mondhatják mégis a 21. század elejének részecskefizikusai, hogy nagy gyorsítóikban - ha csak röpke pillanatokra is - sikerült kiszabadítaniuk a kvarkokat börtönükből? Mikor alakultak ki ezek a kvarkbörtönök - az Univerzum első mikrostruktúrái -, és meddig maradnak fenn?

    • 1 hr 44 min

Customer Reviews

4.9 out of 5
57 Ratings

57 Ratings

Kissrg ,

Best of best

Élvezet hallgatni, meg úgy is, hogy a felét nem értem :-)

Jenayleiwu ,

Még még még

Bármennyit tudnám hallgatni. Remélem kerülnek fel aktuális előadások is.

abula66 ,

Szuper!

Imádom hallgatni is.

Top Podcasts In Science

Ma is tanultam valamit
Index.hu
Lélekben
Klubrádió
Pogi Podcast
Pogi
Qubit Podcast
QUBIT.HU
zCast - a HVG fenntarthatósági podcastja
HVG podcastok
NASA's Curious Universe
National Aeronautics and Space Administration (NASA)

You Might Also Like